Codazzi Tensors and the Quasi-Statistical Structure Associated with Affine Connections on Three-Dimensional Lorentzian Lie Groups

نویسندگان

چکیده

In this paper, we classify three-dimensional Lorentzian Lie groups on which Ricci tensors associated with Bott connections, canonical connections and Kobayashi–Nomizu are Codazzi these connections. We also the quasi-statistical structure

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Control Affine Systems on Solvable Three-dimensional Lie Groups, I

We seek to classify the full-rank left-invariant control affine systems evolving on solvable three-dimensional Lie groups. In this paper we consider only the cases corresponding to the solvable Lie algebras of types II, IV , and V in the Bianchi-Behr classification.

متن کامل

Harmonicity and Minimality of Vector Fields on Lorentzian Lie Groups

‎We consider four-dimensional lie groups equipped with‎ ‎left-invariant Lorentzian Einstein metrics‎, ‎and determine the harmonicity properties ‎of vector fields on these spaces‎. ‎In some cases‎, ‎all these vector fields are critical points for the energy functional ‎restricted to vector fields‎. ‎We also classify vector fields defining harmonic maps‎, ‎and calculate explicitly the energy of t...

متن کامل

the structure of lie derivations on c*-algebras

نشان می دهیم که هر اشتقاق لی روی یک c^*-جبر به شکل استاندارد است، یعنی می تواند به طور یکتا به مجموع یک اشتقاق لی و یک اثر مرکز مقدار تجزیه شود. کلمات کلیدی: اشتقاق، اشتقاق لی، c^*-جبر.

15 صفحه اول

Connections Compatible with Tensors. a Characterization of Left-invariant Levi–civita Connections in Lie Groups

Symmetric connections that are compatible with semi-Riemannian metrics can be characterized using an existence result for an integral leaf of a (possibly non integrable) distribution. In this paper we give necessary and sufficient conditions for a left-invariant connection on a Lie group to be the Levi–Civita connection of some semi-Riemannian metric on the group. As a special case, we will con...

متن کامل

Homogeneous geodesics of non-unimodular Lorentzian Lie groups and naturally reductive Lorentzian spaces in dimension three

We determine, for all three-dimensional non-unimodular Lie groups equipped with a Lorentzian metric, the set of homogeneous geodesics through a point. Together with the results of [C] and [CM2], this leads to the full classification of three-dimensional Lorentzian g.o. spaces and naturally reductive spaces.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2021

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym13081459